14,994 research outputs found

    Molecular Genetic Typing of Staphylococcus aureus from Cows, Goats, Sheep, Rabbits and Chickens

    Get PDF
    End of project reportsS. aureus can also cause a number of infections in animals such as tick-associated pyaemia in lambs, staphylococcosis in rabbits, septicaemia, abscesses and chondronecrosis in chickens and pneumonia and osteomyelitis complex in turkeys. S. aureus is the most frequent cause of bovine mastitis, a disease that is of economic importance worldwide (Beck et al., 1992). Typically staphylococcal mastitis is chronic in nature, with subclinical mastitis being the most common form

    Failure monitoring in dynamic systems: Model construction without fault training data

    Get PDF
    Advances in the use of autoregressive models, pattern recognition methods, and hidden Markov models for on-line health monitoring of dynamic systems (such as DSN antennas) have recently been reported. However, the algorithms described in previous work have the significant drawback that data acquired under fault conditions are assumed to be available in order to train the model used for monitoring the system under observation. This article reports that this assumption can be relaxed and that hidden Markov monitoring models can be constructed using only data acquired under normal conditions and prior knowledge of the system characteristics being measured. The method is described and evaluated on data from the DSS 13 34-m beam wave guide antenna. The primary conclusion from the experimental results is that the method is indeed practical and holds considerable promise for application at the 70-m antenna sites where acquisition of fault data under controlled conditions is not realistic

    Initial results on fault diagnosis of DSN antenna control assemblies using pattern recognition techniques

    Get PDF
    Initial results obtained from an investigation using pattern recognition techniques for identifying fault modes in the Deep Space Network (DSN) 70 m antenna control loops are described. The overall background to the problem is described, the motivation and potential benefits of this approach are outlined. In particular, an experiment is described in which fault modes were introduced into a state-space simulation of the antenna control loops. By training a multilayer feed-forward neural network on the simulated sensor output, classification rates of over 95 percent were achieved with a false alarm rate of zero on unseen tests data. It concludes that although the neural classifier has certain practical limitations at present, it also has considerable potential for problems of this nature

    The monic integer transfinite diameter

    Full text link
    We study the problem of finding nonconstant monic integer polynomials, normalized by their degree, with small supremum on an interval I. The monic integer transfinite diameter t_M(I) is defined as the infimum of all such supremums. We show that if I has length 1 then t_M(I) = 1/2. We make three general conjectures relating to the value of t_M(I) for intervals I of length less that 4. We also conjecture a value for t_M([0, b]) where 0 < b < 1. We give some partial results, as well as computational evidence, to support these conjectures. We define two functions that measure properties of the lengths of intervals I with t_M(I) on either side of t. Upper and lower bounds are given for these functions. We also consider the problem of determining t_M(I) when I is a Farey interval. We prove that a conjecture of Borwein, Pinner and Pritsker concerning this value is true for an infinite family of Farey intervals.Comment: 32 pages, 5 figure

    Helminths in the hygiene hypothesis:Sooner or later?

    Get PDF
    There is increasing recognition that exposures to infectious agents evoke fundamental effects on the development and behaviour of the immune system. Moreover, where infections (especially parasitic infections) have declined, immune responses appear to be increasingly prone to hyperactivity. For example, epidemiological studies of parasite-endemic areas indicate that prenatal or early-life experience of infections can imprint an individual's immunological reactivity. However, the ability of helminths to dampen pathology in established inflammatory diseases implies that they can have therapeutic effects even if the immune system has developed in a low-infection setting. With recent investigations of how parasites are able to modulate host immune pathology at the level of individual parasite molecules and host cell populations, we are now able to dissect the nature of the host–parasite interaction at both the initiation and recall phases of the immune response. Thus the question remains – is the influence of parasites on immunity one that acts primarily in early life, and at initiation of the immune response, or in adulthood and when recall responses occur? In short, parasite immunosuppression – sooner or later

    Real-time antenna fault diagnosis experiments at DSS 13

    Get PDF
    Experimental results obtained when a previously described fault diagnosis system was run online in real time at the 34-m beam waveguide antenna at Deep Space Station (DSS) 13 are described. Experimental conditions and the quality of results are described. A neural network model and a maximum-likelihood Gaussian classifier are compared with and without a Markov component to model temporal context. At the rate of a state update every 6.4 seconds, over a period of roughly 1 hour, the neural-Markov system had zero errors (incorrect state estimates) while monitoring both faulty and normal operations. The overall results indicate that the neural-Markov combination is the most accurate model and has significant practical potential

    Data management study, volume 5. Appendix E - Contractor data package quality assurance /QA/ Final report

    Get PDF
    Manufacturing verification tests for quality assurance and control data management on Voyager spacecraf

    Transcritical shallow-water flow past topography: finite-amplitude theory

    Get PDF
    We consider shallow-water flow past a broad bottom ridge, localized in the flow direction, using the framework of the forced SuGardner (SG) system of equations, with a primary focus on the transcritical regime when the Froude number of the oncoming flow is close to unity. These equations are an asymptotic long-wave approximation of the full Euler system, obtained without a simultaneous expansion in the wave amplitude, and hence are expected to be superior to the usual weakly nonlinear Boussinesq-type models in reproducing the quantitative features of fully nonlinear shallow-water flows. A combination of the local transcritical hydraulic solution over the localized topography, which produces upstream and downstream hydraulic jumps, and unsteady undular bore solutions describing the resolution of these hydraulic jumps, is used to describe various flow regimes depending on the combination of the topography height and the Froude number. We take advantage of the recently developed modulation theory of SG undular bores to derive the main parameters of transcritical fully nonlinear shallow-water flow, such as the leading solitary wave amplitudes for the upstream and downstream undular bores, the speeds of the undular bores edges and the drag force. Our results confirm that most of the features of the previously developed description in the framework of the unidirectional forced Kortewegde Vries (KdV) model hold up qualitatively for finite amplitude waves, while the quantitative description can be obtained in the framework of the bidirectional forced SG system. Our analytic solutions agree with numerical simulations of the forced SG equations within the range of applicability of these equations
    • …
    corecore